Differentiable Functions into Real Normed Spaces
نویسندگان
چکیده
منابع مشابه
Differentiable Functions into Real Normed Spaces
The notation and terminology used here have been introduced in the following papers: [12], [2], [3], [7], [9], [11], [1], [4], [10], [13], [6], [17], [18], [15], [8], [16], [19], and [5]. For simplicity, we adopt the following rules: F denotes a non trivial real normed space, G denotes a real normed space, X denotes a set, x, x0, r, p denote real numbers, n, k denote elements of N, Y denotes a ...
متن کاملThe Differentiable Functions on Normed Linear Spaces
The notation and terminology used in this paper are introduced in the following papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8], [9], [25], [13], [15], [16], [17], [12], [14], and [2]. For simplicity, we adopt the following rules: n, k denote natural numbers, x, X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r1 denotes ...
متن کاملIsometric Differentiable Functions on Real Normed Space1
From now on S, T ,W , Y denote real normed spaces, f , f1, f2 denote partial functions from S to T , Z denotes a subset of S, and i, n denote natural numbers. Now we state the propositions: (1) Let us consider a set X and functions I, f . Then (f X) · I = (f · I) I−1(X). (2) Let us consider real normed spaces S, T , a linear operator L from S into T , and points x, y of S. Then L(x)− L(y) = L(x...
متن کاملDifferentiable Functions on Normed Linear Spaces. Part II
The terminology and notation used in this paper have been introduced in the following articles: [16], [3], [19], [5], [4], [1], [15], [6], [17], [18], [9], [8], [2], [20], [12], [14], [10], [13], [7], and [11]. For simplicity, we adopt the following rules: S, T denote non trivial real normed spaces, x0 denotes a point of S, f denotes a partial function from S to T , h denotes a convergent to 0 ...
متن کاملCompletions of normed algebras of differentiable functions
In this paper we look at normed spaces of differentiable functions on compact plane sets, including the spaces of infinitely differentiable functions considered by Dales and Davie in [7]. For many compact plane sets the classical definitions give rise to incomplete spaces. We introduce an alternative definition of differentiability which allows us to describe the completions of these spaces. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2011
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-011-0012-7